Joint Learning of Binocularly Driven Saccades and Vergence by Active Efficient Coding

نویسندگان

  • Qingpeng Zhu
  • Jochen Triesch
  • Bertram E. Shi
چکیده

This paper investigates two types of eye movements: vergence and saccades. Vergence eye movements are responsible for bringing the images of the two eyes into correspondence, whereas saccades drive gaze to interesting regions in the scene. Control of both vergence and saccades develops during early infancy. To date, these two types of eye movements have been studied separately. Here, we propose a computational model of an active vision system that integrates these two types of eye movements. We hypothesize that incorporating a saccade strategy driven by bottom-up attention will benefit the development of vergence control. The integrated system is based on the active efficient coding framework, which describes the joint development of sensory-processing and eye movement control to jointly optimize the coding efficiency of the sensory system. In the integrated system, we propose a binocular saliency model to drive saccades based on learned binocular feature extractors, which simultaneously encode both depth and texture information. Saliency in our model also depends on the current fixation point. This extends prior work, which focused on monocular images and saliency measures that are independent of the current fixation. Our results show that the proposed saliency-driven saccades lead to better vergence performance and faster learning in the overall system than random saccades. Faster learning is significant because it indicates that the system actively selects inputs for the most effective learning. This work suggests that saliency-driven saccades provide a scaffold for the development of vergence control during infancy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vergence deficits in patients with cerebellar lesions.

The cerebellum is part of the cortico-ponto-cerebellar circuit for conjugate eye movements. Recent animal data suggest an additional role of the cerebellum for the control of binocular alignment and disconjugate, i.e. vergence eye movements. The latter is separated into two different components: fast vergence (to step targets) and slow vergence (to ramp and sinusoidal targets). The aim of this ...

متن کامل

Saccades reduce latency and increase velocity of ocular accommodation

Horizontal vergence can be stimulated binocularly with disparity (disparity vergence) or monocularly with accommodation (accommodative vergence). The latter results from a neural cross-coupling that causes both horizontal vergence and accommodation to respond when either one is stimulated [Alpern, M., & Ellen, P. (1956). American Journal of Ophthalmology, 42, 289-303]. The velocity of disparity...

متن کامل

Inhibition of saccade and vergence eye movements in 3D space.

Inhibitory capacity was investigated by measuring the eye movements of normal subjects asked to fixate a central point, and to suppress eye movements toward visual distracters appearing in the periphery or in depth. Eight right-handed young adults performed such a suppression or distracter task. In different conditions, the distracter could appear at 10 degrees left or right at a distance of 20...

متن کامل

“Trait” and “state” aspects of fixation disparity during reading

Eye movement research in reading has traditionally been associated with the investigation of visual processing and language comprehension (see, for example: (Kliegl, Nuthmann & Engbert, 2006, Liversedge, White, Findlay & Rayner, 2006b, Rayner, 1998)). Central to the description (and prediction) of eye movement behaviour during reading are saccades and fixations, which are traditionally extracte...

متن کامل

Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.

To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017